analysis of effective parameters on electro fenton system with stainless steel and graphite electrodes for removing synthetic wastewater of acid orange 7

نویسندگان

محمد قالبی زاده

دانشجوی کارشناسی ارشد مهندسی عمران و محیط زیست- دانشگاه تربیت مدرس بیتا آیتی

دانشگاه تربیت مدرس- دانشکده مهندسی عمران و محیط زیست- گروه مهندسی محیط زیست

چکیده

1. introductionsynthetic dyes and specially azo dyes are common pollutants found in textile and dyeing industries effluent. azo dyes are the most important class of synthetic dyes and and represent about 70% of all world dyes consumption. textile effluent can cause considerable pollution and rise high health risk factors due to loos of 20% of dyes in process and large scale of dyes used in these industries. the characteristics of the textile wastewater are high color intensity and visibility in very low concentrations, complex chemical structures, and light resistance and hard to biodegradability, variability in ph range and above of these they have high carcinogenic and mutagenic potential.generally, the physical, chemical and biological methods were used for treating textile wastewater can be mentioned as electrocoagulation, adsorption, fenton, photo-fenton and photo-catalytic process.in recent years, advanced oxidation technologies have been described as efficient procedures to obtain high oxidation yields from several kinds of organic compounds. these methods mineralize and converse pollutants into co2, h2o and inorganic ions, by the action of hydroxyl radical, which acts as a nonselective and strong oxidant of organics.electro-fenton is a common advanced oxidation processes which contains electrochemical production of h2o2 and fenton process that makes each process more efficient. its advantages are low operation cost, high potential for complete destruction and removal of organic pollutants into harmless compounds such as co2, water and mineral salts. electro-fenton process involves the reaction of a homogeneous organic contaminants with strong oxidants, h2o2 that produced by injecting air into water near the carbon electrode cathode and the iron ion as catalyst produce hydroxyl radical which eventually led to the decomposition of organic compounds.2. materials and methodsin this study, electrochemical process was developed at ambient temperature in a 500 ml rectangular plexiglass cubic reactor which includes two electrodes, an anode made of 304 stainless steel and a graphite cathode placed 3cm from each other and a pm-3005d power supply. air was blowing in the cathodic zone by an rs electrical 610 air generator pump and an ika rh-bassic 2 magnetic stirrer was used to mix and homogenize the sample. the other equipments used in this study include a kern pls 360-3 digital scale with 0.001 accuracy and metrohm 691 ph meter. the amount of dye in solution is measured by using a hach dr-4000 spectrophotometer at a wavelength of maximum absorption of acid orange 7 (485 nm) and the calibration curve of dye concentrations, respectively.in this study, several parameters including current intensity (0.3, 0.6, 0.9 and 1.2 a), aeration rates (0, 3.5 and 7 l/min), electrodes area (30, 60, 90 cm2), initial ph (2, 3, 6.5 and 9) and energy consumption were examined.in order to maintain the flow of electricity in the cells, na2so4 (merck) 0.01 m was used. all experiments were performed according to the method of analysis of water and wastewater.3. results & discussion 3.1. effect of current intensitythe influence of current intensity has been investigated in the range of 0.3 to 1.2 a., when current intensity was 0.3, dye removal efficiency was 71% after 120 min reaction. increase of current intensity to 1.2 a could enhance dye removal efficiency to 94%, caused by increasing production of ferrous ions and hydrogen peroxide that results to enhance the production of hydroxyl radical. when the current intensity was increased further, excessive hydroxyl radicals would be consumed via following side reactions which may reduce the dye removal efficiency.fe2+ + oh0 → fe3+ + oh- (1)h2o2 + oh0 → ho20 + h2o (2)oh0 → o2(g) + 2h+ + 2e- (3)due to the dye removal efficiency at current intensities of 0.6 and 1.2 a were approximately equal, the current intensity of 0.6 a was selected as the optimum level with lower power consumption than other cases (0.24 kwh/ppm).3.2. effect of air flowincreasing the air flow rate from 0 to 3.5 l/min resulted in an increase of the acid orange 7 removal efficiency from 80 to 90 percent at 150 min. the removal efficiency remained constant when the air rate was increased to 7 l/min. the experimental results indicated that increasing air flow leads to increase hydrogen peroxide and enhance dye removal efficiency by improving production of hydroxide radicals, but further increase in air flow would lead to reduce removal efficiency by consumption of hydroxide radical with exceed hydrogen peroxide (reaction 2).3.3. effect of electrode surfacethe results showed that when the electrode surface were 30, 60 and 90 cm2, the degradation percent of acid orange 7 after 300 min were 68, 89 and 97 percent, respectively. however by increasing time reaction, dye removal reaches to constant value. it was well known that the amounts of electro-fenton reagents would be increased by enhancing electrode surface and result in increasing dye degradation.3.4. effect of initial phdue to the direct production of hydrogen peroxide in situ, the highest dye removal efficiency was obtained at ph=2 because in this ph, h2o2 is more stable and could be produced more efficiently. anyway, increase the initial ph lead to reduce dye removal efficiency in the first 60 minutes. dye removal efficiency is decreased by increasing the ph to the neutral and alkaline ranges because of the formation of ferric hydroxide species, reduction in the ferrous ions reproduction and reduction in hydrogen peroxide generation. the results show that the dye removal were 76, 64, 62, and 55 percent, with initial ph of 2, 3, 6.5 and 9 at 60 min electrolysis respectively. however with increasing time reaction, efficiency of dye removal improved at initial ph of 6.5 to 95 percent at 180 min electrolysis. so initial ph of 6.5 was selected as optimum condition for reducing chemical material for releasing wastewater into the environment.4. conclusionthis paper has considered the electro-fenton treatment of an azo dye with producing in situ hydrogen peroxide by oxygen reduction on graphite cathode. the effects of current intensity, air flow rate, initial ph and electrode surface were investigated. the experimental results showed that electro-fenton process is able to decompose organic compounds without producing sludge as well as the oxidizing agent (h2o2) that produce only oxygen and water, so this process can be used for treatment or pre-treatment of wastewater containing toxic and non-biodegradable materials, especially textile effluents. from the obtained results, after 300 min of electrolysis, 90 percent dye removal was achieved under optimum condition (current intensity= 0.6a, ph=6.5, no aeration, electrode surface= 60cm2 and energy consumption= 0.24kwh/ppm), which shows electro-fenton is the proper way to degrade acid orange 7.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

investigation of effective parameters on the rigidity of light composite diaphragms (psscb) by fem

در این رساله با معرفی سقف های psscb متشکل از ترکیب ورق های فولادی ذوزنقه ای و تخته های سیمانی الیافی به عنوان سقف های پیش ساخته (سازگار با سیستم سازه ای قاب های فولادی سبک) به بررسی پارامترهای موثر بر صلبیت سقف، پرداخته می شود. در تحقیق حاضر ابتدا به مدل سازی دو نمونه سقف آزمایش شده، به روش اجزاء محدود با استفاده از نرم افزار تحلیلی abaqus ver 6.10 پرداخته شده است. نمونه های ساخته شده تحت اعما...

Enhanced Electro-Fenton Mineralization of Acid Orange 7 Using a Carbon Nanotube Fiber-Based Cathode

A new cathodic material for electro-Fenton (EF) process was prepared based on a macroscopic fiber (CNTF) made of mm-long carbon nanotubes directly spun from the gas phase by floating catalyst CVD, on a carbon fiber (CF) substrate. CNTF@CF electrode is a highly graphitic material combining a high surface area (~260 m2/g) with high electrical conductivity and electrochemical stability. One kind o...

متن کامل

Application of Electrocoagulation Process for the Removal of Acid Orange 5 in Synthetic Wastewater

IIn this study, the Electro Coagulation (EC) was used for the removal of acid orange 5 from synthetic wastewater in a batch electrochemical reactor. The impact of the operational variables such as current density, initial pH, time of electrolysis, and initial concentration of the dye was investigated. The results showed that the optimum conditions were obtained at initial pH of 7, curre...

متن کامل

fabrication of new ion sensitive field effect transistors (isfet) based on modification of junction-fet for analysis of hydronium, potassium and hydrazinium ions

a novel and ultra low cost isfet electrode and measurement system was designed for isfet application and detection of hydronium, hydrazinium and potassium ions. also, a measuring setup containing appropriate circuits, suitable analyzer (advantech board), de noise reduction elements, cooling system and pc was used for controlling the isfet electrode and various characteristic measurements. the t...

Pharmaceutical Wastewater Chemical Oxygen Demand Reduction: Electro-Fenton, UV-enhanced Electro-Fenton and Activated Sludge

In this study, Chemical Oxygen Demand (COD) from a pharmaceutical wastewater (PhW) was reduced by several techniques such as electro-Fenton (EF), photo electro-Fenton (PEF) and activated sludge (AS) processes and the obtained data were compared with each other. The effects of several parameters such as pH, current density, H2O2/Fe2+ molar ratio, volume ratio of ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
محیط شناسی

جلد ۴۱، شماره ۴، صفحات ۸۵۵-۸۶۵

کلمات کلیدی
[ ' 1 . i n t r o d u c t i o n s y n t h e t i c d y e s a n d s p e c i a l l y a z o d y e s a r e c o m m o n p o l l u t a n t s f o u n d i n t e x t i l e a n d d y e i n g i n d u s t r i e s e f f l u e n t . a z o d y e s a r e t h e m o s t i m p o r t a n t c l a s s o f s y n t h e t i c d y e s a n d a n d r e p r e s e n t a b o u t 7 0 % o f a l l w o r l d d y e s c o n s u m p t i o n . t e x t i l e e f f l u e n t c a n c a u s e c o n s i d e r a b l e p o l l u t i o n a n d r i s e h i g h h e a l t h r i s k f a c t o r s d u e t o l o o s o f 2 0 % o f d y e s i n p r o c e s s a n d l a r g e s c a l e o f d y e s u s e d i n t h e s e i n d u s t r i e s . t h e c h a r a c t e r i s t i c s o f t h e t e x t i l e w a s t e w a t e r a r e h i g h c o l o r i n t e n s i t y a n d v i s i b i l i t y i n v e r y l o w c o n c e n t r a t i o n s ' , ' c o m p l e x c h e m i c a l s t r u c t u r e s ' , ' a n d l i g h t r e s i s t a n c e a n d h a r d t o b i o d e g r a d a b i l i t y ' , ' v a r i a b i l i t y i n p h r a n g e a n d a b o v e o f t h e s e t h e y h a v e h i g h c a r c i n o g e n i c a n d m u t a g e n i c p o t e n t i a l . g e n e r a l l y ' , ' t h e p h y s i c a l ' , ' c h e m i c a l a n d b i o l o g i c a l m e t h o d s w e r e u s e d f o r t r e a t i n g t e x t i l e w a s t e w a t e r c a n b e m e n t i o n e d a s e l e c t r o c o a g u l a t i o n ' , ' a d s o r p t i o n ' , ' f e n t o n ' , ' p h o t o ' , ' f e n t o n a n d p h o t o ' , ' c a t a l y t i c p r o c e s s . i n r e c e n t y e a r s ' , ' a d v a n c e d o x i d a t i o n t e c h n o l o g i e s h a v e b e e n d e s c r i b e d a s e f f i c i e n t p r o c e d u r e s t o o b t a i n h i g h o x i d a t i o n y i e l d s f r o m s e v e r a l k i n d s o f o r g a n i c c o m p o u n d s . t h e s e m e t h o d s m i n e r a l i z e a n d c o n v e r s e p o l l u t a n t s i n t o c o 2 ' , ' h 2 o a n d i n o r g a n i c i o n s ' , ' b y t h e a c t i o n o f h y d r o x y l r a d i c a l ' , ' w h i c h a c t s a s a n o n s e l e c t i v e a n d s t r o n g o x i d a n t o f o r g a n i c s . e l e c t r o ' , ' f e n t o n i s a c o m m o n a d v a n c e d o x i d a t i o n p r o c e s s e s w h i c h c o n t a i n s e l e c t r o c h e m i c a l p r o d u c t i o n o f h 2 o 2 a n d f e n t o n p r o c e s s t h a t m a k e s e a c h p r o c e s s m o r e e f f i c i e n t . i t s a d v a n t a g e s a r e l o w o p e r a t i o n c o s t ' , ' h i g h p o t e n t i a l f o r c o m p l e t e d e s t r u c t i o n a n d r e m o v a l o f o r g a n i c p o l l u t a n t s i n t o h a r m l e s s c o m p o u n d s s u c h a s c o 2 ' , ' w a t e r a n d m i n e r a l s a l t s . e l e c t r o ' , ' f e n t o n p r o c e s s i n v o l v e s t h e r e a c t i o n o f a h o m o g e n e o u s o r g a n i c c o n t a m i n a n t s w i t h s t r o n g o x i d a n t s ' , ' h 2 o 2 t h a t p r o d u c e d b y i n j e c t i n g a i r i n t o w a t e r n e a r t h e c a r b o n e l e c t r o d e c a t h o d e a n d t h e i r o n i o n a s c a t a l y s t p r o d u c e h y d r o x y l r a d i c a l w h i c h e v e n t u a l l y l e d t o t h e d e c o m p o s i t i o n o f o r g a n i c c o m p o u n d s . 2 . m a t e r i a l s a n d m e t h o d s i n t h i s s t u d y ' , ' e l e c t r o c h e m i c a l p r o c e s s w a s d e v e l o p e d a t a m b i e n t t e m p e r a t u r e i n a 5 0 0 m l r e c t a n g u l a r p l e x i g l a s s c u b i c r e a c t o r w h i c h i n c l u d e s t w o e l e c t r o d e s ' , ' a n a n o d e m a d e o f 3 0 4 s t a i n l e s s s t e e l a n d a g r a p h i t e c a t h o d e p l a c e d 3 c m f r o m e a c h o t h e r a n d a p m ' , ' 3 0 0 5 d p o w e r s u p p l y . a i r w a s b l o w i n g i n t h e c a t h o d i c z o n e b y a n r s e l e c t r i c a l 6 1 0 a i r g e n e r a t o r p u m p a n d a n i k a r h ' , ' b a s s i c 2 m a g n e t i c s t i r r e r w a s u s e d t o m i x a n d h o m o g e n i z e t h e s a m p l e . t h e o t h e r e q u i p m e n t s u s e d i n t h i s s t u d y i n c l u d e a k e r n p l s 3 6 0 ' , ' 3 d i g i t a l s c a l e w i t h 0 . 0 0 1 a c c u r a c y a n d m e t r o h m 6 9 1 p h m e t e r . t h e a m o u n t o f d y e i n s o l u t i o n i s m e a s u r e d b y u s i n g a h a c h d r ' , ' 4 0 0 0 s p e c t r o p h o t o m e t e r a t a w a v e l e n g t h o f m a x i m u m a b s o r p t i o n o f a c i d o r a n g e 7 ( 4 8 5 n m ) a n d t h e c a l i b r a t i o n c u r v e o f d y e c o n c e n t r a t i o n s ' , ' r e s p e c t i v e l y . i n t h i s s t u d y ' , ' s e v e r a l p a r a m e t e r s i n c l u d i n g c u r r e n t i n t e n s i t y ( 0 . 3 ' , ' 0 . 6 ' , ' 0 . 9 a n d 1 . 2 a ) ' , ' a e r a t i o n r a t e s ( 0 ' , ' 3 . 5 a n d 7 l / m i n ) ' , ' e l e c t r o d e s a r e a ( 3 0 ' , 6 0 , ' 9 0 c m 2 ) ' , ' i n i t i a l p h ( 2 ' , 3 , ' 6 . 5 a n d 9 ) a n d e n e r g y c o n s u m p t i o n w e r e e x a m i n e d . i n o r d e r t o m a i n t a i n t h e f l o w o f e l e c t r i c i t y i n t h e c e l l s ' , ' n a 2 s o 4 ( m e r c k ) 0 . 0 1 m w a s u s e d . a l l e x p e r i m e n t s w e r e p e r f o r m e d a c c o r d i n g t o t h e m e t h o d o f a n a l y s i s o f w a t e r a n d w a s t e w a t e r . 3 . r e s u l t s & d i s c u s s i o n 3 . 1 . e f f e c t o f c u r r e n t i n t e n s i t y t h e i n f l u e n c e o f c u r r e n t i n t e n s i t y h a s b e e n i n v e s t i g a t e d i n t h e r a n g e o f 0 . 3 t o 1 . 2 a . ' , ' w h e n c u r r e n t i n t e n s i t y w a s 0 . 3 ' , ' d y e r e m o v a l e f f i c i e n c y w a s 7 1 % a f t e r 1 2 0 m i n r e a c t i o n . i n c r e a s e o f c u r r e n t i n t e n s i t y t o 1 . 2 a c o u l d e n h a n c e d y e r e m o v a l e f f i c i e n c y t o 9 4 % ' , ' c a u s e d b y i n c r e a s i n g p r o d u c t i o n o f f e r r o u s i o n s a n d h y d r o g e n p e r o x i d e t h a t r e s u l t s t o e n h a n c e t h e p r o d u c t i o n o f h y d r o x y l r a d i c a l . w h e n t h e c u r r e n t i n t e n s i t y w a s i n c r e a s e d f u r t h e r ' , ' e x c e s s i v e h y d r o x y l r a d i c a l s w o u l d b e c o n s u m e d v i a f o l l o w i n g s i d e r e a c t i o n s w h i c h m a y r e d u c e t h e d y e r e m o v a l e f f i c i e n c y . f e 2 + + o h 0 f e 3 + + o h ' , ' ( 1 ) h 2 o 2 + o h 0 h o 2 0 + h 2 o ( 2 ) o h 0 o 2 ( g ) + 2 h + + 2 e ' , ' ( 3 ) d u e t o t h e d y e r e m o v a l e f f i c i e n c y a t c u r r e n t i n t e n s i t i e s o f 0 . 6 a n d 1 . 2 a w e r e a p p r o x i m a t e l y e q u a l ' , ' t h e c u r r e n t i n t e n s i t y o f 0 . 6 a w a s s e l e c t e d a s t h e o p t i m u m l e v e l w i t h l o w e r p o w e r c o n s u m p t i o n t h a n o t h e r c a s e s ( 0 . 2 4 k w h / p p m ) . 3 . 2 . e f f e c t o f a i r f l o w i n c r e a s i n g t h e a i r f l o w r a t e f r o m 0 t o 3 . 5 l / m i n r e s u l t e d i n a n i n c r e a s e o f t h e a c i d o r a n g e 7 r e m o v a l e f f i c i e n c y f r o m 8 0 t o 9 0 p e r c e n t a t 1 5 0 m i n . t h e r e m o v a l e f f i c i e n c y r e m a i n e d c o n s t a n t w h e n t h e a i r r a t e w a s i n c r e a s e d t o 7 l / m i n . t h e e x p e r i m e n t a l r e s u l t s i n d i c a t e d t h a t i n c r e a s i n g a i r f l o w l e a d s t o i n c r e a s e h y d r o g e n p e r o x i d e a n d e n h a n c e d y e r e m o v a l e f f i c i e n c y b y i m p r o v i n g p r o d u c t i o n o f h y d r o x i d e r a d i c a l s ' , ' b u t f u r t h e r i n c r e a s e i n a i r f l o w w o u l d l e a d t o r e d u c e r e m o v a l e f f i c i e n c y b y c o n s u m p t i o n o f h y d r o x i d e r a d i c a l w i t h e x c e e d h y d r o g e n p e r o x i d e ( r e a c t i o n 2 ) . 3 . 3 . e f f e c t o f e l e c t r o d e s u r f a c e t h e r e s u l t s s h o w e d t h a t w h e n t h e e l e c t r o d e s u r f a c e w e r e 3 0 ' , ' 6 0 a n d 9 0 c m 2 ' , ' t h e d e g r a d a t i o n p e r c e n t o f a c i d o r a n g e 7 a f t e r 3 0 0 m i n w e r e 6 8 ' , ' 8 9 a n d 9 7 p e r c e n t ' , ' r e s p e c t i v e l y . h o w e v e r b y i n c r e a s i n g t i m e r e a c t i o n ' , ' d y e r e m o v a l r e a c h e s t o c o n s t a n t v a l u e . i t w a s w e l l k n o w n t h a t t h e a m o u n t s o f e l e c t r o ' , ' f e n t o n r e a g e n t s w o u l d b e i n c r e a s e d b y e n h a n c i n g e l e c t r o d e s u r f a c e a n d r e s u l t i n i n c r e a s i n g d y e d e g r a d a t i o n . 3 . 4 . e f f e c t o f i n i t i a l p h d u e t o t h e d i r e c t p r o d u c t i o n o f h y d r o g e n p e r o x i d e i n s i t u ' , ' t h e h i g h e s t d y e r e m o v a l e f f i c i e n c y w a s o b t a i n e d a t p h = 2 b e c a u s e i n t h i s p h ' , ' h 2 o 2 i s m o r e s t a b l e a n d c o u l d b e p r o d u c e d m o r e e f f i c i e n t l y . a n y w a y ' , ' i n c r e a s e t h e i n i t i a l p h l e a d t o r e d u c e d y e r e m o v a l e f f i c i e n c y i n t h e f i r s t 6 0 m i n u t e s . d y e r e m o v a l e f f i c i e n c y i s d e c r e a s e d b y i n c r e a s i n g t h e p h t o t h e n e u t r a l a n d a l k a l i n e r a n g e s b e c a u s e o f t h e f o r m a t i o n o f f e r r i c h y d r o x i d e s p e c i e s ' , ' r e d u c t i o n i n t h e f e r r o u s i o n s r e p r o d u c t i o n a n d r e d u c t i o n i n h y d r o g e n p e r o x i d e g e n e r a t i o n . t h e r e s u l t s s h o w t h a t t h e d y e r e m o v a l w e r e 7 6 ' , 6 4 , 6 2 , ' a n d 5 5 p e r c e n t ' , ' w i t h i n i t i a l p h o f 2 ' , 3 , ' 6 . 5 a n d 9 a t 6 0 m i n e l e c t r o l y s i s r e s p e c t i v e l y . h o w e v e r w i t h i n c r e a s i n g t i m e r e a c t i o n ' , ' e f f i c i e n c y o f d y e r e m o v a l i m p r o v e d a t i n i t i a l p h o f 6 . 5 t o 9 5 p e r c e n t a t 1 8 0 m i n e l e c t r o l y s i s . s o i n i t i a l p h o f 6 . 5 w a s s e l e c t e d a s o p t i m u m c o n d i t i o n f o r r e d u c i n g c h e m i c a l m a t e r i a l f o r r e l e a s i n g w a s t e w a t e r i n t o t h e e n v i r o n m e n t . 4 . c o n c l u s i o n t h i s p a p e r h a s c o n s i d e r e d t h e e l e c t r o ' , ' f e n t o n t r e a t m e n t o f a n a z o d y e w i t h p r o d u c i n g i n s i t u h y d r o g e n p e r o x i d e b y o x y g e n r e d u c t i o n o n g r a p h i t e c a t h o d e . t h e e f f e c t s o f c u r r e n t i n t e n s i t y ' , ' a i r f l o w r a t e ' , ' i n i t i a l p h a n d e l e c t r o d e s u r f a c e w e r e i n v e s t i g a t e d . t h e e x p e r i m e n t a l r e s u l t s s h o w e d t h a t e l e c t r o ' , ' f e n t o n p r o c e s s i s a b l e t o d e c o m p o s e o r g a n i c c o m p o u n d s w i t h o u t p r o d u c i n g s l u d g e a s w e l l a s t h e o x i d i z i n g a g e n t ( h 2 o 2 ) t h a t p r o d u c e o n l y o x y g e n a n d w a t e r ' , ' s o t h i s p r o c e s s c a n b e u s e d f o r t r e a t m e n t o r p r e ' , ' t r e a t m e n t o f w a s t e w a t e r c o n t a i n i n g t o x i c a n d n o n ' , ' b i o d e g r a d a b l e m a t e r i a l s ' , ' e s p e c i a l l y t e x t i l e e f f l u e n t s . f r o m t h e o b t a i n e d r e s u l t s ' , ' a f t e r 3 0 0 m i n o f e l e c t r o l y s i s ' , ' 9 0 p e r c e n t d y e r e m o v a l w a s a c h i e v e d u n d e r o p t i m u m c o n d i t i o n ( c u r r e n t i n t e n s i t y = 0 . 6 a ' , ' p h = 6 . 5 ' , ' n o a e r a t i o n ' , ' e l e c t r o d e s u r f a c e = 6 0 c m 2 a n d e n e r g y c o n s u m p t i o n = 0 . 2 4 k w h / p p m ) ' , ' w h i c h s h o w s e l e c t r o ' , ' f e n t o n i s t h e p r o p e r w a y t o d e g r a d e a c i d o r a n g e 7 . ' ]

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023